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ANALYSIS OF RETINAL PIGMENT EPITHELIUM INTEGRIN EXPRESSION AND
ADHESION TO AGED SUBMACULAR HUMAN BRUCH’S MEMBRANE

BY Marco A. Zarbin MD PhD

ABSTRACT

Purpose: Uncultured aged retinal pigment epithelium (RPE) does not resurface aged Bruch’s membrane after 24 hours
in organ culture. These experiments assess whether culturing alters RPE integrin expression and resurfacing of Bruch’s
membrane. 

Methods: RNA was isolated from uncultured and cultured RPE of aged adult donor and fetal eyes. Integrin subunit
messenger RNA (mRNA) expression was studied by reverse transcriptase–polymerase chain reaction (RT-PCR) and
semiquantitative analysis of the amplified products. Cell surface integrin expression was assessed using flow cytometry.
Passaged cultured fetal RPE and primary cultured aged RPE were seeded onto Bruch’s membrane, and resurfacing was
assessed with scanning electron microscopy.

Results: Uncultured fetal RPE had low levels of α3 and β5 mRNA compared to passaged cultured fetal RPE. Uncultured
aged RPE had decreased α1-5 mRNA compared to primary cultured aged RPE. Cultured aged RPE had decreased β4
and β5 mRNA compared to passaged cultured fetal RPE. Flow cytometry confirmed the expression of α1-5, αv, and β1
protein on cultured fetal RPE and α1-3 and β1 protein on cultured aged RPE. Twenty-four hours after seeding, cultured
fetal and aged RPE resurfaced 99% ± 1.3% and 76% ± 22%, respectively, of aged submacular Bruch’s membrane spec-
imens from which native RPE had been debrided, exposing the native RPE basement membrane. Cultured fetal and
aged RPE resurfaced 97% ± 3.1% and 39% ± 35%, respectively, of specimens in which the inner collagenous layer was
exposed. 

Conclusions: Uncultured aged RPE has low amounts of integrin subunits that form receptors for laminin, fibronectin,
and collagens. Culturing up-regulates integrins and promotes more efficient aged RPE attachment to and survival on
aged Bruch’s membrane.

Trans Am Ophthalmol Soc 2003;101:493-514

INTRODUCTION

The main goal of this research is to develop a treatment
that will restore lost vision and stabilize good visual acuity
in patients with subfoveal choroidal neovascularization
due to age-related macular degeneration (AMD). The
central hypothesis of this research is that choroidal new
vessel (CNV) excision coupled with effective retinal
pigment epithelium (RPE) replacement can restore lost
vision and preserve good visual acuity in patients with
AMD-associated CNVs, provided that surgery is under-
taken before significant photoreceptor atrophy has
occurred.

BACKGROUND AND SIGNIFICANCE

AMD is the major cause of irreversible loss of central
vision among the elderly.1-7 Approximately 70% of cases of
severe visual loss in AMD are due to growth of CNVs
under the RPE and retina with secondary exudative reti-
nal detachment, subretinal hemorrhage and lipid exuda-
tion, and outer retinal degeneration.8-11 CNVs can be clas-
sified according to their appearance on fluorescein
angiography.12 CNVs that hyperfluoresce and leak dye
relatively early during fluorescein angiography and are
well circumscribed are termed classic CNVs. CNVs that
leak dye later in the angiogram are termed occult CNVs.
CNVs that exhibit features of both classic and occult
CNVs are termed mixed CNVs. Most CNVs are occult or
mixed.13-15

Current treatments for CNVs in AMD patients
generally do not yield good visual acuity. Laser photoco-
agulation and photodynamic therapy (PDT) are the only
CNV treatments whose effectiveness is proved in random-
ized prospective multicenter clinical trials. Only a 
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minority of AMD patients with CNVs (~20%) is eligible
for laser photocoagulation,13,14 which itself is associated
with poor visual outcome and a high rate (~50%) of recur-
rent CNV growth.16-21 Four years after treatment, the aver-
age visual acuity with laser photocoagulation of new
subfoveal CNVs is 20/320 versus 20/500 in untreated
controls.19 CNV photocoagulation also can be associated
with an immediate decrease in vision, although, on aver-
age, treated eyes have better visual acuity than untreated
eyes by 1 to 2 years after treatment. Eyes with occult
CNVs and poorly demarcated boundaries are not good
candidates for laser photocoagulation.22 Also, in the case of
classic CNVs, if lesions are too large or if patients have
good visual acuity, laser photocoagulation is not an attrac-
tive option. In such patients, laser photocoagulation can
cause severe central visual loss. A treatment benefit from
PDT has been shown for eyes with predominantly (ie,
≥50%) classic CNVs and occult without classic CNVs in
AMD.23,24 The visual results with PDT are modest. Two
years after the initiation of therapy, 59% of untreated
patients with predominantly classic CNVs experienced
moderate visual loss compared to 31% of treated patients.
One year after PDT treatment, the mean visual acuity is
20/160 + 2 versus 20/200 in controls. Only about 16% of
treated eyes experienced an improvement of ≥1 line
(versus 7% of control eyes). Many AMD patients with
CNVs are not eligible for PDT.13-15 In summary, the main
benefit of laser photocoagulation and PDT is that they
tend to reduce the rate of visual loss. These treatments
restore lost vision only in a minority of cases.
Restoration/preservation of reading vision after these
therapies is uncommon.

Submacular surgery with CNV excision offers the
possibility of removing large CNVs while preserving the
overlying retina, thus preventing/reversing photoreceptor
damage and blindness associated with subretinal bleeding
and scarring in AMD. Submacular surgery does not
depend on a precise delineation of the CNV boundaries,
in contrast to laser photocoagulation and PDT, and is
therefore potentially applicable to a much larger propor-
tion of all patients with AMD-associated CNVs.25 In the
only published randomized prospective multicenter study
comparing submacular surgery with laser photocoagula-
tion, laser treatment and surgery were found to be equiv-
alent. Two years after treatment, 20 (65%) of 31 laser-
treated eyes and 14 (50%) of 28 surgery-treated eyes had
visual acuity that was better than or no more than 1 line
worse than the baseline level.25 Visual recovery after CNV
excision is usually poor in AMD patients.26,27 Clinical and
histopathological studies indicate that in AMD patients,
CNV excision is usually associated with (1) removal of
adjacent native RPE and RPE basement membrane28-31

and (2) incomplete/aberrant RPE growth into the dissec-

tion bed.31-36 Lack of RPE ingrowth into the dissection bed
probably results in choriocapillaris and photoreceptor
atrophy.31,35-41 These findings indicate that RPE transplan-
tation might improve visual outcome after CNV excision
in AMD patients.

Our research goal is to develop an improved treat-
ment for the exudative complications of AMD that results
in preservation or restoration of precision vision (ie, visual
acuity that would sustain activities of independent living,
such as reading and driving). Because of the limitations in
laser photocoagulation and PDT, many alternative
approaches to treatment are being explored, including
gene therapy, anti-angiogenic therapy, radiation therapy,
feeder vessel photocoagulation, thermotherapy, surgery to
relocate the affected retina, intravitreal injection or oral
administration of steroids, and cellular transplantation
combined with CNV excision.23,24,42-59 It is not clear at this
time that any single treatment will both be applicable to a
substantial majority of AMD patients with CNVs and
provide or maintain excellent visual acuity.

RATIONALE FOR RPE TRANSPLANTATION

Combined CNV excision–RPE replacement might be a
treatment that restores good visual acuity and is applicable
to many people, including those not treatable by any
currently available modality. This reasoning is based on (1)
the ability to excise all CNVs, (2) good visual results in some
patients undergoing macular translocation, and (3) the abil-
ity of RPE to rescue photoreceptors and reconstitute the
choriocapillaris in experimental models. As already noted,
the rationale for surgical excision of CNVs is that removal
of the CNV eliminates the source of bleeding, serous reti-
nal detachment, and subretinal fibrosis, all of which can
cause retinal atrophy. Thus, before excessive photoreceptor
atrophy occurs, patients with subfoveal CNVs have poten-
tially reversible visual loss.60 Surgical techniques exist for
complete CNV excision (including classic, occult, and
mixed CNVs), but visual outcome after such surgery is
usually poor in AMD patients.26-28,31,35,61 Why is vision poor
after CNV excision in AMD patients? Potential explana-
tions include preoperative, intraoperative, and postopera-
tive factors, as detailed in the following paragraphs.

Preoperative Factors 
Photoreceptor Degeneration. Most surgeons do not

recommend CNV excision unless visual acuity is 20/200 or
less, which may mean some degree of photoreceptor
degeneration has occurred.26-28,31,35,61 However, patients
with CNVs due to the presumed ocular histoplasmosis
syndrome (POHS) with vision of 20/200 or worse often
can improve to 20/40 or better after CNV excision,28,62-64 so
preoperative visual acuity per se may not be a decisive
limiting factor provided that surgery is undertaken in a
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timely manner. 
Choriocapillaris Degeneration. Ramrattan and

coworkers65 showed that there is a progressive decrease in
the thickness of the choroid from 200 µm at birth to 80
µm by age 90 years. Choriocapillaris density and lumen
diameter decrease, and the width of the intercapillary
pillars increases with age.37,60,65-69

Intraoperative Factors
Retinal Damage. The existence of retinal damage is

proven by intraoperative clinical observation of retina-
CNV adhesions and the presence of photoreceptor frag-
ments in excised CNV complexes.29,31 Similar damage can
occur, however, with CNV excision in patients with
POHS, yet one can still obtain significant visual recovery
after surgery.29,30

Removal of CNV-Associated RPE. Histopathology of
excised CNV complexes demonstrates the presence of
native RPE and fragments of subjacent RPE basement
membrane with CNVs in 70% to 90% of AMD cases,
owing to the intimate association of RPE with CNVs.29-31

In POHS, on the other hand, CNVs sometimes grow
internal to the RPE (rather than external to it, as is more
often the case in AMD), which permits CNV excision with
preservation of subjacent RPE.70 The preservation of
subfoveal RPE may contribute to the better visual
outcome after CNV excision in POHS versus AMD
patients.71,72

Intraoperative Choriocapillaris Damage. Histo-
pathology of excised CNVs rarely demonstrates the pres-
ence of choriocapillaris.29-31

Postoperative Factors
Subfoveal Choriocapillaris Nonperfusion. Chorio-

capillaris nonperfusion is seen in about 75% to 90% of
AMD patients after CNV excision and very likely is an
important factor limiting visual recovery.31,35,36,40

Choriocapillaris nonperfusion is probably related to RPE
removal at surgery, although in some cases preoperative
and intraoperative choriocapillaris damage may play a
role. Choriocapillaris nonperfusion is indirect evidence
for inadequate RPE resurfacing of the dissection bed.41,73-

77 Human histopathological studies have provided direct
evidence for inadequate RPE resurfacing of the dissection
bed.33,34 Long-term human studies suggest that chorio-
capillaris nonperfusion can progress after CNV excision,
which also indicates inadequate RPE survival in the
dissection bed.78

Postoperative Photoreceptor Degeneration. Human
clinical studies indicate that periods of macular detach-
ment up to 2 weeks are compatible with recovery of visual
acuity of 20/50 in a substantial number of patients.79

Monkey and cat experiments indicate that many photore-

ceptors survive during retinal detachment periods of
several weeks duration, although some photoreceptors
definitely die.80,81 Approximately 80% of the cat outer
nuclear layer survives during 3 days of retinal detach-
ment.82 The number of photoreceptor nuclei in detached
cat retina does not begin to decline significantly (ie, >20%
decline in density) until detachment periods of over 13
days.83 The holangiotic cat retina is rod dominated,
however. Data from cat retinal detachment studies indi-
cate that 14-day detachment followed by 30-day reattach-
ment is associated with rod and cone outer segment
length similar to that observed after 5-day detachments.81

In contrast, preliminary data regarding cone survival indi-
cate that cones may be more prone to apoptosis with
detachment (versus rods) and that 44% of cones die
during a 3-day detachment in cats.84 (It is not clear that all
cones in detached retina were identified in the latter study
owing to down-regulation of cone-identifying molecules
[eg, calbindin D] after detachment.) Additional experi-
ments in the cone-dominated ground squirrel confirm
these impressions.85 While published experimental data
do not indicate clearly what the exact survival of cones is
after 2-week periods of retinal detachment, a reasonable
estimate is that 40% to 60% survive in otherwise healthy
retina. In addition to duration of detachment, the height
of detachment influences photoreceptor survival. The
macular detachments that would arise from CNV excision
are shallow (<2 to 3 mm height), which also favors
photoreceptor survival during a 2-week RPE resurfacing
period. Since clinical data indicate that relatively small
numbers of preserved cones are needed to support visual
acuity of 20/30,86 it appears that enough photoreceptors
could survive combined CNV excision and RPE trans-
plantation to support reading vision, provided that a prop-
erly functioning RPE monolayer can be re-established
within 2 weeks of surgery. Thus, RPE transplantation,
which is demonstrably effective in laboratory animals
(please see below), probably is feasible in human patients
despite its possible association with photoreceptor death
during the process of resurfacing Bruch’s membrane.

Visual results with macular translocation surgery
might mean that combined CNV excision–RPE transplan-
tation will result in good visual acuity in patients with
AMD. Results of an uncontrolled retrospective consecu-
tive series indicate that by 6 months after surgery, 15
(48%) of 31 patients gained ≥2 lines of vision on a Snellen
chart.45 (Complications and physical constraints on the
degree of macular relocation achieved routinely may limit
the number of patients who are eligible for treatment with
this approach.44-48,87,88)

RESULTS OF RPE TRANSPLANTS IN HUMANS WITH AMD

Thus far, allogeneic RPE transplants in AMD patients

Analysis of Retinal Pigment Epithelium Integrin Expression and Adhesion to Aged Submacular Human Bruch’s Membrane
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that have undergone CNV excision have failed, with
resulting poor vision and, in patients who are not immune
suppressed, subretinal fibrosis and chronic fluid leakage
in the dissection bed.50,89-93 Why? 

Immune Rejection 
RPE transplants are rejected in mice, despite the pres-
ence of some degree of immune privilege in the subreti-
nal space.94-96 Possible immune rejection of RPE allografts
has been described in other experimental animals.97-100

Transplants in some AMD patients undergoing CNV exci-
sion have used allogeneic cultured, fetal human RPE,
which renders them susceptible to rejection; culturing
also can induce major histocompatibility antigen expres-
sion.101 In a pilot study, AMD patients receiving uncul-
tured adult human RPE underwent immune suppression
with prednisone, cyclosporine, and azathioprine, and the
grafts did not appear to be rejected.91 These elderly
patients, however, could not tolerate systemic triple ther-
apy for an extended period of time. Local immune
suppression is somewhat effective in laboratory experi-
ments,102 but it has not been reported in human RPE
transplants. Methods for harvesting RPE for autologous
transplants exist,103,104 but in vitro data indicate that
harvested aged human RPE does not adhere well to aged
submacular Bruch’s membrane, even in the presence of
native RPE basement membrane.105 If effective immune
suppression can be achieved, then use of allogeneic
cultured cells could be considered.106,107

Graft Failure 
Binder and coworkers53 have transplanted autologous
RPE in AMD patients undergoing CNV excision.  Most
patients achieved postoperative visual acuity close to
20/200. Three (21%) of the 14 patients had postoperative
visual acuity of 20/60 or better. Of these three, 1 patient
(7%) had preoperative visual acuity of 20/50. Thus, it is
not clear that autologous RPE transplantation had a
significant effect on visual outcome in the majority of
patients described in this report. In this series and in the
previously cited reports of RPE transplants in AMD eyes,
the RPE transplants may not have survived in the subreti-
nal space independent of immune rejection. Tezel and
Del Priore108 have shown that if RPE cells cannot adhere
to their basement membrane (or a comparable surface)
within 24 hours, they undergo apoptosis.  All previous
demonstrations of successful RPE transplants in labora-
tory animals have involved transplantation onto normal
Bruch’s membrane or onto native RPE (eg, references 96-

100,102,103,106,109-123).  In AMD, Bruch’s membrane is itself
abnormal as a result of lipidization, protein cross-linking,
protein deposition, and changes in hydraulic conductiv-
ity.124-130 Transplanted fresh adult human RPE does not

adhere or show limited adherence to aged submacular
human Bruch’s membrane in vitro.105 Consistent with
these in vitro observations, histopathology of an immune
suppressed patient that underwent CNV excision plus
RPE transplantation indicates that the cells were not
organized as a monolayer, and there was photoreceptor
atrophy over the transplant.52 The poor visual results asso-
ciated with autologous iris pigment epithelium transplants
may result from graft failure and, perhaps less likely, from
limitations in the ability of iris pigment epithelium to
replace RPE.131-140 Currently, techniques for routine
harvest and transplantation of stem cell RPE precursors
are not available. 

BIOLOGY OF CELL ATTACHMENT

Analysis of human CNV excision–RPE transplant failure
leads one to focus on improving human RPE adhesion to
and survival on aged submacular human Bruch’s
membrane in the presence and absence of native RPE
basement membrane.

Biology of Cell Attachment in Model Systems
Cells adhere to their extracellular matrix by binding to
ligands in the extracellular matrix. In metazoa, this bind-
ing is mediated primarily by a class of proteins called
integrins.141 Integrins are a family of transmembrane
heterodimers (ie, comprising an α and a β subunit).
There are 18 α and eight β subunits that are known to
assemble into 24 distinct integrins.141 Integrin
heterodimers utilizing the β1 subunit tend to mediate
epithelial cell–extracellular matrix interactions.142

Following binding to the extracellular matrix, integrins
aggregate at focal sites of contact in which many proteins
are assembled and activated on the integrins’ cytoplasmic
ends. This protein assembly is termed a focal adhe-
sion.141,143 The reorganization of cytoskeletal and other
adhesion-related proteins leads to cell adhesion. Upon
adhesion to a suitable substrate, anchorage-dependent
cells respond efficiently to growth factors through activa-
tion of protein kinase C and mitogen-activated protein
kinase.

Among the proteins comprising a focal adhesion,
focal adhesion kinase (FAK) plays an important role as a
positive regulator of cell migration and proliferation and
in the prevention of apoptosis. FAK is a tyrosine kinase
that binds to the β subunit of integrins either directly144 or
via talin and undergoes autophosphorylation at tyrosine
residue 397.145 Recruitment and phosphorylation of FAK
initiate a number of signal pathways that result in cell
growth.146-149 Tyrosine phosphorylation of FAK followed by
binding of Src kinases eventually leads to activation of
Rho, CdC42, Rac, Ras, and phosphoinositide 3-kinase
(PI-3K) that ultimately results in cell adhesion, 
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proliferation, and inhibition of apoptosis.146,150-152

Focal adhesions confer structural integrity by influ-
encing reorganization of cytoskeletal elements in the cell.
Stable focal adhesions result in cell adhesion, while
dynamically regulated formation of focal adhesions is a
key element in cell migration. Assembly of focal adhesions
is under the control of the small GTPase, Rho, whose
activity is under the control of FAK.153-155

Factors Affecting Cell Adhesion
As already noted, cell adhesion to the extracellular matrix is
mediated primarily by integrins. Cell-permeable inhibitors
of the Ca2+-dependent protease, calpain, stabilize periph-
eral focal adhesions, increase adhesiveness, and decrease
the rate of cell detachment.156 When increases in cytosolic
Ca2+ concentration are inhibited, neutrophils adhere to
fibronectin or vitronectin.157 Inhibitors of nitric oxide syne-
thetase, NG-monomethyl-L-arginine or NG-nitro-L-argi-
nine-methyl ester HCL, increase the number of adherent
and immigrated leukocytes in cat mesenteric prepara-
tions.158 This effect is partially reversed by L-arginine. 

Anoikis 
Adhesion to a substrate is essential for the survival and
proliferation of anchorage-dependent cells.159-161

Anchorage-dependent cells dissociated from their extra-
cellular matrix undergo apoptosis. Cell death induced due
to loss of anchorage is termed anoikis.162-164 Cell shape
(mediated by the cytoskeleton) and signal pathways acti-
vated by cell binding to the extracellular matrix regulate
apoptosis.165,166 Rescue from cell death involves coopera-
tion of cytoskeletal proteins and certain integrin mole-
cules. In some cells, for example, the integrin subunit, α5,
can rescue cells from anoikis, but αv cannot. In the pres-
ence of constitutively active FAK, apoptosis can be
prevented in unattached cells,163 while inactivation of FAK
causes apoptosis.167 As already noted, FAK activates PI-
3K. PI-3K is a lipid kinase that is involved in integrin-initi-
ated signal transduction. It is a heterodimeric enzyme
comprising a catalytic 110 kd subunit (p110) and a 85 kd
regulatory subunit (p85). PI-3K associates with FAK
following integrin activation,168,169 which in turn activates
protein kinase B and Akt. Pro-apoptotic molecules Bad,
caspase 9, and repressing fork head transcription factor
are all inactivated by protein kinase B/Akt, thus prevent-
ing apoptosis.170 (PI-3K also plays a regulatory role in cell
migration.150,171-175) Also, integrin subunit α5-mediated
attachment results in detectable levels of bcl-2 that are
not seen with other integrins.176 Bcl-2 inhibits caspases
and, ultimately, apoptosis. In addition, bcl-2 expression
leads to decreased p21 and p27 (in suspended cells),
which arrests the cell cycle. Such an arrest is a require-
ment for apoptosis to occur.177 Rapid, complete attach-

ment to the dissection bed by transplanted RPE cells is
highly desirable to avoid apoptosis,108 to avoid egress of
RPE into the vitreous cavity, which can lead to complica-
tions such as epiretinal membrane formation,178 and to
promote photoreceptor survival.39,179

Relevance to RPE Transplantation in AMD Eyes
Histopathology of excised CNVs indicates that the surgi-
cal cleavage plane is through Bruch’s membrane. In most
(~70% to 90%) specimens, extensive fragments of native
RPE basement membrane are removed with the CNV.29-31

In vitro RPE adhesion experiments using cultured fetal
and aged human RPE indicate that RPE adhesion to
Bruch’s membrane lacking native RPE basement
membrane is deficient (please see discussion that
follows).105,180 Thus, the abnormal surface of the dissection
bed may underlie inadequate resurfacing of the iatrogenic
RPE defect, at least in part. 

RPE Attachment to Model Surfaces. In vitro experi-
ments have shown that normal, untransformed epithelial
cells can attach rapidly and spread on attachment factors
such as fibronectin, laminin, and epibolin.181-186 In general,
epithelial cells do not appear to have an absolute require-
ment for only one attachment protein.184-187 Studies of RPE
cells have shown that attachment and proliferation of
these cells can be facilitated by combinations of laminin,
fibronectin, collagen type IV, and other components of the
extracellular matrix as well as by heparin and growth
factors.181,188,189 This lack of absolute specificity for attach-
ment factors suggests that RPE cells are capable of inter-
acting with multiple factors, and therefore a combination
of the various attachment factors in appropriate propor-
tions may facilitate the attachment of transplanted RPE
cells onto denuded Bruch’s membrane. This combination
is likely present in the areas of residual RPE basement
membrane (Table I). RPE basement membrane and the
inner collagenous layer of Bruch’s membrane contain
laminin, fibronectin, vitronectin, and collagen type IV, and
RPE cells contain a β1 integrin subunit.182,183,190-192 Studies
by Campochiaro and Hackett188 show that RPE cells not
only attach and proliferate in culture but also differentiate
and show density-dependent inhibition when grown on
laminin supplemented with basic fibroblast growth factor
and heparin. Ho and Del Priore193 have shown that RPE
attachment to Bruch’s membrane is mediated in part by
fibronectin, laminin, vitronectin, and collagen IV.
Presumably, the presence of these ligands in the RPE
basement membrane underlies the preferential adher-
ence of RPE to RPE basement membrane versus other
layers of Bruch’s membrane.105,108,180,194-196

Several studies have demonstrated integrins in
human RPE. Anderson and coworkers197 demonstrated
that cultured human RPE exhibit α5β1 immunoreactivity,

Analysis of Retinal Pigment Epithelium Integrin Expression and Adhesion to Aged Submacular Human Bruch’s Membrane
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and Meitinger and coworkers198 showed that α2, α3, and
α5 subunits are present in these cells.  In an immunohis-
tochemical study of two adult donor eyes (one had squa-
mous cell carcinoma, and the other had choroidal
melanoma) by Brem and coworkers,199 RPE in situ
expressed α4 and β2 subunits. Blocking β1 integrin
subunit binding in human RPE decreases adhesion to
RPE-derived extracellular matrix as well as to Bruch’s
membrane.193 Studies performed using chick, monkey, and
cat RPE have demonstrated the presence of α3, α6, and
β1 integrin subunits.181,197,200 Mousa and coworkers201

showed that αvβ5 mediates the attachment of cultured
human RPE, including the ARPE-19 cell line, to
vitronectin, and α5β1 mediates binding to fibronectin.

RPE adhesion to extracellular matrices can be
affected by drugs that modulate intracellular Ca2+ (eg,
ionomycin) and calmodulin signaling systems. Wagner
and coworkers202 showed that tamoxifen and the experi-
mental calmodulin antagonist, J8, produced significant
inhibition of RPE attachment that was partially inhibited
by serum. Up-regulation of the protein kinase C pathway
using the phorbol ester, phorbol myristate acetate, also
inhibited RPE attachment to fibronectin. Down-regula-
tion of cyclic AMP using 2′,5′-dideoxyadenosine caused a
slight reduction in attachment.

Human RPE Attachment to Human Bruch’s
Membrane. Human RPE cells attach rapidly to RPE base-
ment membrane compared to the other layers of Bruch’s
membrane.105,180,194,195 The degree of attachment to and
resurfacing of Bruch’s membrane varies, however, with
the source of RPE cells. Trypsin-harvested, cultured fetal
human RPE attaches to aged human submacular Bruch’s
membrane explants with intact native RPE basement
membrane and, by 1 hour after seeding, resurfaces 92% ±
9% of a 7-mm-diameter surface.180 The percentage of
resurfacing at 1 hour decreases to 37% ± 33% if the inner
collagenous layer is exposed. In contrast, uncultured,
collagenase IV-harvested aged RPE attaches to and resur-

faces only 8.7% ± 2.6% of aged submacular Bruch’s
membrane explants with intact native RPE basement
membrane and 0.63% ± 0.42% of aged submacular
Bruch’s membrane inner collagenous layer by 4 hours
after seeding.105 Twenty-four hours after seeding uncul-
tured aged RPE, most of the aged human submacular
Bruch’s membrane surface is covered by debris, presum-
ably from dying cells. Using cultured adult human RPE
and peripheral human Bruch’s membrane, Tezel and
coworkers194 showed that the attachment rate was highest
on RPE basement membrane and was lower on the outer
layers of Bruch’s membrane. Similarly, the proliferation
rate was highest and apoptosis rate was lowest on native
RPE basement membrane compared to the other layers
of Bruch’s membrane. Cultured adult RPE resurfaced
peripheral Bruch’s membrane almost completely by 14
days when native RPE basement membrane was present
but failed to do so on the inner collagenous layer even
after 3 weeks.195 Ho and Del Priore193 reported that 6
hours after seeding, approximately 52% of cultured,
passaged RPE cells from a 32-year-old donor attached
onto submacular Bruch’s membrane of 70- to 90-year-old
donors.  Other studies from the same laboratory also
showed higher attachment rates with cultured RPE from
older donors when seeded onto peripheral Bruch’s
membrane of older persons.193,194,196 The higher attachment
rate might reflect a difference in integrin expression of
primary isolated RPE cells versus cultured cells. It also
might reflect differences in the extracellular matrix
composition of peripheral versus submacular Bruch’s
membrane.126,203 Histology of excised CNVs,29-31

histopathology of eyes after CNV excision,33,34 and postop-
erative clinical findings31,35,36,40 all suggest that the CNV
dissection bed exposes both the superficial and deeper
portions of the inner collagenous layer, which will consti-
tute much of the surface to which transplanted cells must
adhere and on which they must survive. In contrast to
uncultured aged human RPE, cultured fetal human RPE
can adhere and can spread to some degree on the inner
collagenous layer.180 Scanning electron microscopy studies
show that a tightly woven “basket weave” of collagen
fibers is present on the superficial inner collagenous layer
surface, as described by Goldbaum and Madden.204 In
addition, the collagen fibers are fused in some areas, leav-
ing a smooth surface that may be more suitable for cell
attachment owing to greater extracellular matrix ligand
availability.165,205

Our research group hypothesized that differences in
integrin expression might be responsible for the variation
in attachment and resurfacing on different layers of
Bruch’s membrane by uncultured aged and cultured fetal
human RPE. This hypothesis could not be confirmed or
refuted by previous studies of integrin expression in RPE

TABLE I: DISTRIBUTION OF VARIOUS EXTRACELLULAR MATRIX LIGANDS IN

HUMAN BRUCH’S MEMBRANE130,191

BRUCH’S MEMBRANE LAMINA EXTRACELLULAR MATRIX LIGAND

RPE basement membrane CIV, CV, laminin, HS
Inner collagenous layer CI, CIII, CV, fibronectin, CS, DS
Elastic lamina Elastin, CVI, fibronectin
Outer collagenous layer CI, CIII, CV, fibronectin, CS, DS
Choriocapillaris basement CIV, CV, CVI, laminin, HS

membrane

CI through CVI, collagen types I through VI; HS, heparin sulfate; CS,
chondroitin sulfate; DS, dermatan sulfate; RPE, retinal pigment epithe-
lium.

Zarbin
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cells. Therefore, in this study, the expression of cell-extra-
cellular matrix adhesion-mediating α and β integrin
subunits was compared in uncultured and cultured aged
and fetal human RPE using the reverse
transcriptase–polymerase chain reaction (RT-PCR). The
presence of these receptors on the cell surface was
assessed with flow cytometry. The effect of cell
culture–induced changes in integrin expression on attach-
ment was examined by seeding cultured RPE on aged
submacular human Bruch’s membrane.

METHODS

DONOR TISSUE

Adult human donor eyes were obtained from various eye
banks in the United States through the National Disease
Research Interchange, Philadelphia, PA, and the North
Carolina Eye Bank, a Vision Share (Apex, NC) member
eye bank. Eyes from donors ≥55 years were used. Mean
donor age was 72 ± 8.2 years (n = 22). Eyes from fetuses
of 14 to 20 weeks gestation period were obtained through
Advanced Bioscience Resources, Inc (ABR, Alameda
Calif) or the Central Laboratory for Human Embryology
(University of Washington, Seattle, Wash). The mean fetal
age was 18 ± 3.8 (n = 8) gestational weeks. This research
followed the tenets of the Declaration of Helsinki and was
approved by the institutional review board of the New
Jersey Medical School.

RPE CULTURE

The external surface of donor eyes was trimmed, and
globes were immersed in 10% povidone iodine briefly.
This was followed by two 10-minute incubations in
Dulbecco’s modified Eagle’s Medium (DMEM)
(Mediatech, Herndon, VA) containing 2.5 µg/mL ampho-
tericin B. The anterior segment, vitreous, and retina were
dissected out. Posterior segments of fetal eyes, consisting
of RPE-choroid and sclera, were incubated in 0.8 mg/mL
collagenase type IV (Sigma, St Louis, MO) at 37ºC in 10%
CO2 for approximately 90 minutes. In the case of aged
human eyes, the RPE-choroid layers were detached from
the sclera and incubated in 0.4 mg/mL collagenase type
IV for 30 to 45 minutes. RPE sheets were dissected out
carefully at the end of the incubation using 25-gauge
needles, rinsed several times in DMEM, triturated with a
200-µL pipette, and plated on bovine corneal endo thelial
cell–extra cellular matrix (BCE-ECM)-coated
dishes.104,105,180 Cells were cultured in complete medium,
which is DMEM supplemented with 15% fetal bovine
serum (Hyclone Laboratories, Logan, Utah), 2 µM L-glut-
amine (Gibco Life Technologies, Carlsbad, Calif), 2.5
µg/mL amphotericin B (Gibco-BRL, Grand Island, NY),
50 µg/mL gentamicin (Gibco Life Technologies), and 1

ng/mL basic fibroblast growth factor (Gibco Life
Technologies) at 37ºC in 10% CO2

180 Upon reaching
confluency, fetal cells were passaged at 1:4 ratios while
adult RPE, not passaged, was used for RNA, flow cytom-
etry, or attachment studies. Second-passage fetal cells
were suspended in 90% fetal bovine serum/10% dimethyl
sulfoxide and frozen at –80ºC until further use. Cultured
fetal RPE of second to fourth passage were used for these
experiments. Purity of the cultures was determined by
morphology and cytokeratin staining.104 For cytokeratin
staining, cells were fixed with ice-cold methanol for 5
minutes, then blocked for 20 minutes with 2% bovine
serum albumin, 0.2% Triton, and 2% normal goat serum.
Monoclonal anticytokeratin antibody (AE1/AE2 cocktail;
Biogenex, San Ramon, Calif) was applied at a concentra-
tion of 1:50 overnight at 4°C. The keratin antibody was
diluted with blocking solution. For negative controls, cells
were incubated with blocking solution instead of primary
antibody. After washing with cold phosphate buffered
saline (PBS), fluorescein isothiocyanate (FITC)-conju-
gated goat anti-mouse antibody (Sigma) was applied at a
concentration of 1:100 for 1 hour at room temperature.
Cells were washed with cold PBS and mounted with
Vectashield fluorescent mounting medium (Vector
Laboratories, Burlingame, Calif). Slides were examined
with fluorescent microscopy.

REVERSE TRANSCRIPTASE–POLYMERASE CHAIN REACTION

To obtain RNA from uncultured RPE, the posterior
eyecup was prepared from adult donor and fetal eyes as
already described, and the RPE was gently brushed off
into Trizol (Gibco, Rockville, MD) solution. Total RNA
was extracted from uncultured (adult, n = 5; fetal, n = 4)
or cultured (adult, n = 4; fetal, n = 4) RPE using Trizol
according to the manufacturer’s instructions. Genomic
DNA was digested by incubating RNA samples in excess
of RNase-free DNAse I (Gibco) prior to amplification.
Quality of the RNA was determined by electrophoresis of
a small sample. Previously published gene-specific primer
sequences were used with the exceptions of α1 and actin,
which were designed using Primer 3 software (Table II).206

RT-PCR was done with 0.1 mg of RNA using Superscript
One-Step RT-PCR kit (Gibco) under the following condi-
tions in a GeneAmp Perkin Elmer thermocycler:
RT:cDNA synthesis 50ºC (54ºC for β4), 30 minutes;
predenaturation 94ºC, 2 minutes; 35 cycles of PCR: dena-
ture 94ºC, 15 seconds; anneal 55ºC, 30 seconds; extend
72ºC, 30 seconds; final extension: 72ºC for 10 minutes.
Since melanin inhibits PCR,207 0.1 mg of RNA was diluted
with 2.5 mg of RNAse- and DNase-free bovine serum
albumin (Sigma) for 30 minutes at 4ºC prior to use in the
reaction mixture.208 For negative controls, primers or total
RNA were excluded from the reaction mixture, and
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RNAse-free water was used instead. PCR products were
separated on 1.5% agarose gel, stained with 0.5 mg ethid-
ium bromide for 30 minutes, and scanned using a fluo-
rimager (Molecular Dynamics, Sunnyvale, Calif). The
fluorescence intensities were normalized to that of actin.
PCR products were sequenced using BigDye Terminator
v3.1 Cycle sequencing kit (Applied Biosystems, Inc,
Foster City, Calif) on the model 3100 genetic analyzer
(Applied Biosystems) at the New Jersey Medical School

Molecular Resource Facility. Sequences were analyzed
using Sequence Analysis software obtained from the same
vendor and compared with the respective gene sequences
available in the public domain using the National Center
for Biotechnology Information’s BLAST program. 

FLOW CYTOMETRY

Single cell suspensions of cultured adult and fetal cells
were prepared by detaching cells from culture dishes with
trypsin 0.5%/EDTA 0.5 mM solution. Cells were incu-
bated with Dulbecco’s phosphate buffered saline (DPBS;
without Ca2+, Mg2+) containing 1% fetal calf serum and 1%
pooled human serum (blocking solution) for 10 minutes to
block nonspecific binding. This step was followed by incu-
bation for 1 hour at 4ºC with one of the following mouse
monoclonal antibodies (all from Chemicon, Temecula,
Calif) at a dilution of 1:100: α1, α2, α3, α4, α5, αv, β1,
α2β1, α5β1. Cells were washed and incubated in FITC-
conjugated goat anti-mouse antibody (Sigma) at a dilution
of 1:75 for 45 minutes. All washes and incubations were
done in DPBS containing 1% bovine serum albumin and
0.1% NaN3 and at 4°C to reduce metabolic activity of the
cells. Dead cells were labeled with 10 µg/mL propidium
iodide solution prior to analysis of the cells. Negative
control samples included samples incubated with second-
ary antibody alone, stained with propidium iodide alone,
and incubated with blocking solution alone. At least
10,000 cells were analyzed with a Becton Dickinson
FACStar flow cytometer (Becton Dickinson, Franklin
Lakes, NJ). Data from the cells were collected using a
four-decade log amplifier.

RPE ATTACHMENT TO BRUCH’S MEMBRANE IN ORGAN

CULTURE

Submacular Bruch’s membrane explants were prepared
using previously published methods.105,180 After dissecting
out the anterior segment, vitreous, and retina from donor
eyes, submacular RPE was debrided using a microsurgical
sponge (Alcon, Fort Worth, Tex). One eye of each pair was
debrided to create a surface with intact native RPE base-
ment membrane by wiping the RPE gently two to four
times with a sponge moistened with balanced salt solution
(BSS; sodium chloride 0.64%, potassium chloride 0.075%,
calcium chloride dehydrate 0.048%, magnesium chloride
hexahydrate 0.03%, sodium acetate trihydrate 0.39%,
sodium citrate dehydrate 0.17%, sodium hydroxide,
hydrochloric acid, and water) under a dissecting micro-
scope. The number of wipes was determined by the color
change to a lighter appearance that occurs upon RPE
removal. In the fellow eye, the inner collagenous layer was
exposed by repeated (up to 50 times) firm wiping of the
submacular Bruch’s membrane with a relatively dry
sponge. The technique has been validated using scanning

TABLE II: GENE-SPECIFIC PRIMERS TO HUMAN INTEGRIN SUBUNITS AND

EXPECTED PCR PRODUCT SIZE

PRIMER 5′−3′ SEQUENCE PRODUCT SIZE

α1 sense AAGTGCAACAAGTGACAGCG
237

antisense TCTGGCATTGGAAAAGATCC

α2 sense CACTCGATTTGGTTCAGCAA
283

antisense GAACCACTTGTCCAAAGGCA

α3 sense GCCAGCATTGGTGACATCAA
179

antisense GAATAGCCGAAGGTGGCCAA

α4 sense ATGCTGCAAGATTTGGGGAA
265

antisense GCACCAACTGCTACATCTAC

α5 sense CCAGGATGGCTACAATGATG
222

antisense CCCACAATCAGATCAGGATA

α6 sense CAAGATGGCTACCCAGATAT
210

antisense CTGAATCTGAGAGGGAACCA

αv sense AGATCTGGACCAGGATGGTT
197

antisense ATCTGTGGCTCCTTTCATTG

β1 sense GTTACACGGCTGCTGGTGTT
264

antisense CTACTGCTGACTTAGGGATC

β4 sense AACGATGAACGGTGCCACCT
222

antisense CTCCACGATGTTGGACGAGT

β5 sense AGGATGCACTGCATTTGCTG
273

antisense TCCACCGTTGTTCCAGGTAT

β6 sense GGAATGGACAGCAAACTAGC
243

antisense GGAGTCCTTCTGAAGTAGAC

actin sense AAGTACTCCGTGTGGATCGG
286

antisense CACCTTCACCGTTCCAGTTT

Zarbin
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electron and transmission electron microscopy.105 Using a
7-mm-diameter corneal trephine, a full-thickness button
that included the underlying sclera was punched from the
debrided macular area. With the button still in the
trephine, the floor of the trephine was sealed with wax to
support the tissue. Cultured fetal or aged human RPE was
seeded onto the submacular Bruch’s membrane explant
preparation at a density of 1.21 × 105 cells/button in 200
µL of complete medium (please see discussion that
follows). RPE-choroid-sclera explants were cultured with
the sclera side down in 35-mm-diameter tissue culture
dishes (Becton Dickinson) in a humidified atmosphere of
10% CO2 and 90% air at 37°C. Explants were maintained
in complete medium. Following a 24-hour incubation, the
tissue was fixed in 2.5% glutaraldehyde/2% paraformalde-
hyde in 0.1 M sodium phosphate buffer, pH 7.4. The
tissue was dehydrated using graded concentrations of
ethanol, critical point dried (Tousimis Autosamdri-814,
Rockville, MD), mounted onto aluminum stubs, and sput-
ter-coated with 20 nm gold-palladium (Denton DESK II,
Moorestown, NJ). Explants were examined with a scan-
ning electron microscope (JEOL JSM-35C, Tokyo, Japan)
equipped with a Digiscan image capture system (Gatan,
Inc, Pleasanton, Calif) at 25 kV accelerating voltage. For
measuring the area of the explant resurfaced by the cells,
digital images were grabbed at 200× magnification from 8
to 10 nonoverlapping areas using Digital Micrograph soft-
ware (Gatan). The area covered by the cells, as well as the
total area of the 200× field, was measured using NIH
Image J software, and the ratio was expressed as percent
coverage.

STATISTICAL ANALYSIS

Fluorescence intensities of agarose gels of RT-PCR prod-
ucts were analyzed statistically by analysis of variance
(ANOVA), and comparisons were made with the Tukey-
Kramer test. If the data did not satisfy the assumptions of
normal distribution (as determined using the Shapiro-
Wilk W test), the Kruskal-Wallis rank test, a nonparamet-
ric test, was used. Resurfacing of Bruch’s membrane by
cultured fetal or aged human RPE was compared using
Student’s t test.

RESULTS

REVERSE TRANSCRIPTASE–POLYMERASE CHAIN REACTION

We hypothesized that differences in attachment of
passaged cultured fetal RPE and uncultured aged human
RPE could be due to differences in integrin expression.
We extracted RNA directly from the eyecup rather than
enzymatically isolate RPE first in order to control for the
possibility that the amount of mRNA in cells would
change during the short incubation with enzyme. This

procedure was done under microscopic visualization, and
there was no choroidal contamination as judged by the
clinical appearance of the intact Bruch’s membrane
surface.

RT-PCR of integrin subunit mRNA showed low to
absent expression of α1-5 and β6 in uncultured aged
human RPE. Primary cultured aged RPE grown on BCE-
ECM-coated culture dishes contained higher levels of
these mRNAs (Figures 1 and 2). Expression of β4 and β5
subunit mRNA was similar in uncultured and cultured
aged RPE. Uncultured fetal RPE had low levels of α3 and
β4 mRNA, and expression of both of these mRNAs was
higher in passaged cultured fetal cells. These RT-PCR
experiments provide semiquantitative data and do not
indicate the absolute mRNA transcript levels, but only
indicate relative amounts for the four different cell types
analyzed. 

The Shapiro-Wilk W test indicated that the α2, α3,
β4, and β6 mRNA fluorescence intensities were not
distributed normally, reflecting the skewed distribution of
their fluorescence intensities among the four different cell
types, especially in uncultured aged human RPE. In these
cases, the Kruskal-Wallis rank test was used to assess
statistical significance of differences in fluorescence
intensities among the different cell types. In all other
cases, ANOVA was used for this assessment. The four cell
types exhibited statistically significant differences in inte-
grin mRNA subunit expression in the following cases: α1
(P = .047), α2 (P = .0093), α3 (P = .0049), α4 (P = .016),
α5 (P = .00040), β4 (P = .0091), β5 (P = .00010), and β6
(P = .016). For a given integrin subunit mRNA exhibiting
statistically significant differences among the four cell
types, individual comparisons of mRNA expression among
the four cell types were made using the Tukey-Kramer
test. A q of 2.94 (based on α ≤ 0.05 and 16 degrees of free-
dom) was used in the calculations of comparisons, and the
following statistically significant differences were noted.
Expression of α1, α2, α3, α4, and α5 mRNA in uncul-
tured aged human RPE was significantly less than that in
primary cultured aged RPE. Expression of α3 and β5
subunit mRNA was significantly less in uncultured than in
passaged cultured fetal RPE. Expression of α2, α3, and
α5 mRNA in uncultured aged RPE was significantly less
than in passaged cultured fetal RPE. Expression of β5
mRNA was significantly higher in fetal RPE than in aged
RPE regardless of whether the cells were uncultured or
cultured. Cultured fetal RPE had significantly higher
levels of β4 mRNA compared to the other three cell types.
With the exceptions of the β4 and β5 subunits, there were
no statistically significant differences in integrin mRNA
expression between passaged cultured fetal and primary
cultured aged RPE. Despite the finding that β6 integrin
subunit mRNA expression exhibited significant variation
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with the Kruskal-Wallis rank test, Tukey-Kramer testing
did not reveal significant differences in β6 subunit mRNA
expression among the four cell types.

FLOW CYTOMETRY

Since mRNA expression does not demonstrate the pres-
ence of integrin proteins on the cell surface and since inte-
grins can undergo posttranslational modifications, flow
cytometry studies were done to explore further the results
of RT-PCR experiments. Cultured fetal RPE expressed α1,
α2, α3, α4, α5, αv, and β1 subunits on the surface 
(Figure 3). In addition, the heterodimers α2β1 and α5β1
were expressed. Consistent with the RT-PCR data, primary
cultures of aged human RPE expressed α1 and α3 subunits
and the α2β1 heterodimer on the cell surface. At least three
samples were examined for each cell type and for each inte-
grin subunit or heterodimer tested. Experiments (n = 2)
using nonenzymatic isolation of cells did not show any
difference in integrin expression compared to trypsinized
cells (data not shown). Similarly, incubation of isolated cells
for 20 minutes at 37°C before proceeding with the flow
cytometry experiment did not reveal any significant differ-
ences in expression of integrins on the surface compared to
cells that were not incubated (n = 2; data not shown).

CULTURED RPE ATTACHMENT TO AGED HUMAN BRUCH’S
MEMBRANE

The results reported here indicated that, in contrast to
uncultured RPE, cultured aged human RPE expresses
integrins needed for attachment and survival on Bruch’s
membrane. To test this hypothesis, primary cultures of
aged human RPE cells were seeded on aged submacular
human Bruch’s membrane debrided to expose the native
RPE basement membrane or the inner collagenous layer.
We compared the attachment and survival of the same
number of passaged, cultured fetal human RPE on simi-
lar surfaces. Twenty-four hours after seeding, RPE
morphology was examined by scanning electron
microscopy. 

Passaged cultured fetal RPE and primary cultures of
aged human RPE attached and spread on native RPE
basement membrane as well as on the inner collagenous

Zarbin

FIGURE 1
Expression of integrin subunit mRNA in cultured and uncultured fetal
and aged human RPE. Integrin mRNA was amplified by RT-PCR using
gene-specific primers. PCR products were electrophoresed in 1.5%
agarose gel and stained with ethidium bromide. A, Expression of α1-6,
αv, and β1 subunit mRNA. Uncultured aged human RPE shows low
levels of α1-4 mRNA compared to cultured aged or fetal RPE. α3 mRNA
is low in uncultured fetal RPE. M = 100bp marker; 293t cells with β1
primers used as positive control. Primers were eliminated in the –primers
lane. Reverse transcriptase and Taq polymerase enzymes were elimi-
nated in the –RT/Taq lane. B, Expression of β4, β5, and β6 subunit
mRNA. β6 is absent in uncultured aged human RPE. Marker = 100bp.
C, Negative control. No bands were seen when RNA was eliminated
from the samples. FIGURE 2

Semiquantitative analysis of integrin subunit mRNA expression (A, 
α subunits; B, β subunits) in cultured and uncultured fetal and aged
human RPE relative to the expression of actin. RT-PCR products were
electrophoresed in 1.5% agarose gel, stained with ethidium bromide, and
the intensity of fluorescence was measured with a fluorimager.
Uncultured fetal RPE had low levels of α3 and β5 mRNA compared to
passaged cultured fetal RPE. Uncultured aged human RPE had
decreased α1-5 mRNA compared to primary cultured aged RPE.
Cultured aged human RPE cells had decreased β4 and β5 mRNA
compared to passaged cultured fetal RPE. 
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layer of aged submacular human Bruch’s membrane
(Figures 4 and 5, Table III). There were, however, signif-
icant differences in the behavior of the two cell types.
Cultured fetal RPE consistently attached to and resur-
faced almost the entire explant area by 24 hours after
seeding. These cells formed a monolayer that was not
completely confluent, as demonstrated by the presence of
intercellular gaps (Figure 4). In some areas, cellular
processes extended over neighboring cells (Figure 4). The
degree of cultured fetal RPE resurfacing was similar on
native RPE basement membrane (99% ± 1.3% surface
coverage at 24 hours after seeding, n = 4) and on the inner
collagenous layer (97% ± 3.1% surface coverage at 24
hours after seeding, n = 6). No statistically significant
difference was noted in resurfacing of the native RPE

FIGURE 3
Flow cytometry analysis of cell-surface expressed integrin subunits in
second to fourth passage cultures of fetal RPE (A) and primary cultures
of aged human RPE (B) shows the expression of various subunits on the
cell surface (green curve). Negative control is shown closer to the y-axis
as a black shaded curve. Cells were detached from cultures with
trypsin/EDTA, and a single cell suspension was incubated with antibody
against one of the integrin subunits or a heterodimer. Bound antibody
was labeled with fluorescein-tagged secondary antibody. Primary anti-
body was omitted in negative control samples (shaded curve). X-axis
represents relative log fluorescence intensity, and y-axis represents cell
count. 

FIGURE 4
Attachment of cultured fetal human RPE to aged submacular human
Bruch’s membrane. Second passage cultured fetal human RPE (121,000
cells) was seeded onto 7-mm-diameter Bruch’s membrane explants from
which the native RPE was debrided to the level of the RPE basement
membrane or the inner collagenous layer. Scanning electron microscopy
shows that by 24 hours most of the surface is covered by RPE cells in
each case, although some areas of bare Bruch’s membrane are present. A,
Cells on RPE basement membrane show complete coverage in this area.
Supernumerary cells are present as clumps (asterisks) or single cells
(double arrowheads). B, Cells on the inner collagenous layer show
incomplete resurfacing. Small gaps are present between cells (arrows),
and larger uncovered areas are evident (outlined by polygons).
Supernumerary cells are present (double arrowheads). In some areas,
numerous cell extensions are present (arrowheads). A and B show
explants from the same donor (aged 81 years). Cells are from a 17-week
fetal eye. Original magnification ×400.
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FIGURE 5
Attachment of cultured aged human RPE to aged submacular human Bruch’s membrane. Primary cultured aged human RPE (121,000 cells) was seeded
onto 7-mm-diameter Bruch’s membrane explants from which the native RPE was debrided to the level of the RPE basement membrane or the inner
collagenous layer. Scanning electron microscopy shows RPE attachment and spreading on both surfaces at 24 hours after seeding, but resurfacing is not
complete. Cell morphology is highly variable on both surfaces. A, Cells on RPE basement membrane show complete coverage in this area, but the cells
show more morphological variability than fetal RPE cells on similar surfaces. Numerous elongated cell processes are present extending over neighbor-
ing cells (arrowheads). Supernumerary cells are present (double arrowheads). B, Cells on the inner collagenous layer show incomplete coverage of the
surface. Supernumerary cells are present, despite incomplete coverage, as single cells (black double arrowheads) or cell clumps (white double arrow-
heads). Cells attached to the collagen surface (asterisk) are either rounded (black arrowheads) or flattened (arrow). A cell showing apoptotic blebbing is
present on the collagen surface (white arrowhead). C, High magnification of cells on the inner collagenous layer. Collagen fibers are evident at this
magnification confirming the identity of the attachment surface (asterisks). A flattened cell process (arrow) and rounded cells (arrowheads) are shown
on the collagen surface. Double arrowheads point to cell debris adherent to the cell surface. A, B, and C are from the same donor (RPE cells, patient
aged 81 years; Bruch’s membrane explant, patient aged 66 years). A and B, original magnification ×400. C, original magnification ×2,000.
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basement membrane versus the inner collagenous layer 
(P = .33) at 24 hours. A previous study has shown that 1
hour after seeding, RPE attachment to aged Bruch’s
membrane is significantly greater compared to attach-
ment to the inner collagenous layer.180

Bruch’s membrane resurfacing by primary cultures of
aged human RPE, on the other hand, was variable (Table
III). In many specimens, RPE cells attached and spread
on the native RPE basement membrane as well as on the
inner collagenous layer, as was noted with passaged fetal
RPE (Figure 5). In some specimens, numerous rounded
(versus flattened) and shrunken cells were present on the
inner collagenous layer, indicative of inability to attach
(Figure 5).105 Many of the rounded cells exhibited smooth
membranes sometimes with perforations, indicative of
late-stage apoptosis,105 while others were partially frag-
mented, indicative of necrotic-phase apoptosis. In such
specimens, a substantial amount of debris was present on
Bruch’s membrane, possibly the residuum of cells that
had already undergone apoptotic death. Blebbing and
surface debris were not present to any significant degree
in passaged cultured fetal RPE seeded onto Bruch’s
membrane. 

By 24 hours after seeding, primary cultures of aged
human RPE resurfaced the inner collagenous layer to a
lesser degree (39% ± 35% surface coverage, n = 11) than
they did the native RPE basement membrane (76% ±
22% surface coverage, n = 5), and the difference was
statistically significant (P = .046). (In contrast, uncultured
aged human RPE exhibited less than 15% surface cover-
age of Bruch’s membrane 24 hours after seeding onto
native RPE basement membrane of aged submacular
human Bruch’s membrane explants; the amount of cover-
age was even less on the inner collagenous layer.105) At 24
hours after seeding, passaged cultured fetal RPE resur-
faced the inner collagenous layer of Bruch’s membrane to
a significantly greater degree than primary cultured aged
human RPE (P = .0011). Differences in cultured fetal and
aged human RPE resurfacing 24 hours after seeding onto

native RPE basement membrane were not significantly
different (Table III).

The behavior of aged human RPE cells tended to be
similar within a given pair of donor Bruch’s membrane
explants. If few RPE cells attached to one explant, the
explant from the fellow eye also exhibited poor RPE cell
attachment. In contrast, if RPE cells attached to explants
with intact native RPE basement membrane, they also
attached to the fellow eye specimen from which the native
basement membrane had been debrided, exposing the
inner collagenous layer. These data indicate that primary
cultures of aged human RPE from different donors
behave differently and/or that submacular Bruch’s
membrane from different donors supports primary
cultured aged human RPE attachment to different
degrees. 

DISCUSSION

Although several different groups of cell-substrate recep-
tors exist, integrins constitute the dominant group and are
the main receptor types used by cells for adhesion to the
extracellular matrix. Combinations of the β1 subunit with
various a subunits form most of the receptors for extracel-
lular matrix molecules: α1β1, α2β1, α3β1, and α6β1 are
receptors for laminin and/or collagens while α5β1, α4β1,
and αvβ6 are the major receptors for fibronectin.209-211

Several studies using species ranging from Xenopus to
human have demonstrated the expression of one or more
integrins in RPE cells.182,183,197,200,212-215 In the present study,
we assessed the differences in expression of integrin
subunits mediating cell-extracellular matrix adhesion in
fetal and aged human RPE. In aged RPE, α1, α2, α3, α4,
and α5 integrin subunit mRNA was significantly lower in
uncultured compared to primary cultured cells. In fetal
RPE, α2, α3, α5, β4, and β5 subunit mRNA was signifi-
cantly lower in uncultured compared to passaged cultured
cells. Primary cultured aged RPE cells and passaged
cultured fetal human RPE cells did not have identical

TABLE III: RESURFACING OF AGED HUMAN SUBMACULAR BRUCH’S MEMBRANE BY PASSAGED CULTURED HUMAN FETAL RPE

AND PRIMARY CULTURED AGED RPE* 

CELL TYPE

ATTACHMENT SURFACE PASSAGED CULTURED FETAL HUMAN RPE PRIMARY CULTURED AGED HUMAN RPE

Native RPE basement membrane 99% ± 1.3% (n = 4)† 76% ± 22% (n = 5)‡
Inner collagenous layer 97% ± 3.1% (n = 6) 39% ± 35% (n = 11)§¶

*Cells were seeded onto Bruch’s membrane, and resurfacing was assessed 24 hours later by scanning electron microscopy. 
†Data refer to the percent of a 7-mm-diameter area of Bruch’s membrane that is resurfaced 24 hours after native RPE ± subjacent native RPE basement
membrane has been debrided and seeded with cultured fetal or aged human RPE cells.
‡Not statistically different from fetal RPE resurfacing on basement membrane (P = .080).
§Significantly different from fetal RPE resurfacing on the inner collagenous layer (P = .0011).
¶Significantly different from aged RPE resurfacing on basement membrane (P = .046).
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integrin subunit mRNA expression, as β4 and β5 mRNA
levels were higher in fetal cells. Usually, mRNA expres-
sion reflects protein expression unless there is a regulation
at the level of translation, which can occur in cultured
RPE. Liu and Redmond,216 for example, have shown trans-
lational inhibition of RPE-65 transcripts.  Since studies of
integrins in aged human RPE using confocal microscopy
are difficult to interpret because of the presence of large
amounts of pigment and lipofuscin granules, and since
immunohistochemistry and immunoblots depend on the
availability of specific antibodies capable of detecting the
protein, RT-PCR provides an efficient and highly specific
assay for integrins. Flow cytometry data indicate that at
least some integrin subunits detected by RT-PCR also are
expressed on the cell surface. RT-PCR and flow cytome-
try results reported here indicate that uncultured aged
human RPE is unlikely to attach to aged submacular
human Bruch’s membrane upon being transplanted into
the subretinal space and that culturing RPE might
promote proper attachment to this surface.

In patients with AMD undergoing CNV excision, the
surfaces most likely to be encountered by transplanted
RPE in the dissection bed are residual native RPE base-
ment membrane and/or the inner collagenous layer of
Bruch’s membrane. The extracellular matrix components
of Bruch’s membrane vary with the lamina. RPE base-
ment membrane contains collagens IV and V and laminin.
Collagens I, III, and V and fibronectin are present in the
inner and outer collagenous layers. The elastic lamina
contains elastin, fibronectin, and collagen VI, and chorio-
capillaris basement membrane contains collagens IV, V,
and VI, and laminin.130,191,217 Receptors for collagen include
α1β1 and α2β1.218-220 Other integrins may be weak recep-
tors for collagens.221 The relative deficiency of these inte-
grins in aged uncultured human RPE would lead one to
predict poor RPE attachment to these extracellular matrix
molecules. Several different α and β subunit combina-
tions, however, can form a receptor for a particular extra-
cellular matrix ligand, although with varying affinity.222

Therefore, mere absence or low expression of α1β1 and
α2β1 may not completely explain the poor adhesion of
uncultured aged human RPE. Because a number of inte-
grin subunits do not appear to be expressed in these RPE
cells, the likelihood of multiple combinations of integrin
subunits promoting RPE attachment to the RPE base-
ment membrane or the inner collagenous layer is low. In
addition, lower amounts of integrins result in lower
magnitude and slower kinetics of activation intracellular
molecules such as FAK and mitogen-activated protein
kinase.223 As a result, uncultured aged human RPE has a
lower chance of attachment and survival on aged submac-
ular human Bruch’s membrane than primary cultured
aged RPE or passaged cultured fetal human RPE cells.

In a previous study,180 RPE basement membrane was
shown to improve attachment of passaged cultured fetal
human RPE to aged Bruch’s membrane 1 hour after seed-
ing. In the current study, attachment to Bruch’s
membrane was assessed 24 hours after seeding for two
reasons. First, the suspended cells have more time to
attach to Bruch’s membrane, leading to a more accurate
assessment of attachment capacity. Second, anatomic
evidence of attachment is more obvious than at 1 hour
because if the cells do not attach by 24 hours, they
undergo apoptosis.108 If the cells are attached effectively at
this time, they show no signs of apoptosis (eg, membrane
blebbing).108,224 Twenty-four hours after seeding, primary
cultures of aged human RPE seeded on Bruch’s
membrane were able to attach and spread, although
numerous cells were round, most frequently on the inner
collagenous layer. In contrast, few if any surviving cells are
identified on aged submacular human Bruch’s membrane
at this time point if uncultured aged human RPE is
seeded.105 Compared to primary cultured aged RPE,
passaged cultured fetal RPE had more consistently
uniform attachment to aged submacular human Bruch’s
membrane, and the cells had somewhat healthier-appear-
ing morphology 24 hours after seeding (eg, fewer rounded
cells were present on Bruch’s membrane), independent of
whether the cells were seeded onto native RPE basement
membrane or the inner collagenous layer. While resurfac-
ing of Bruch’s membrane explants by primary cultures of
aged human RPE was not equal to that of passaged fetal
RPE, it was clearly higher than uncultured aged human
RPE.105

The difference in the behavior of cultured, passaged
fetal human RPE and primary cultures of aged human
RPE might reflect qualitative and/or quantitative differ-
ences in integrin expression (eg, β4 and β5 subunits). In
addition to differences in integrin expression, reasons for
the discrepancy between the degree of resurfacing by
primary cultures of aged human RPE and passaged fetal
RPE might include the following. There may be variabil-
ity in the health or phenotype of aged human RPE cells in
primary culture.225,226 Cells derived from primary cultures
tend to exhibit more phenotypic variability than passaged
cells. In these studies, we used primary cultures of aged
human RPE cells because passaged aged human RPE
does not grow well in culture.104 In contrast, fetal RPE was
used after having been passaged two to four times.
Variable age-related Bruch’s membrane changes might
alter extracellular matrix ligand availability, which in turn
might affect the ability of aged RPE to resurface Bruch’s
membrane. Other AMD-associated changes in Bruch’s
membrane might be inhibitory to RPE cell attachment.227

The different integrin subunits that are expressed
upon culturing and the similar expression among cultured
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fetal and cultured aged human RPE are likely to be a
result of culturing on a BCE-ECM-coated surface. BCE-
ECM contains fibronectin, laminin, and collagens III, IV,
and VI,228 and studies indicate that human RPE cells grow
well on this surface.181,188 The up-regulation of integrins
seen in cultured aged human RPE does not appear to
occur when uncultured aged human RPE is seeded onto
aged submacular human Bruch’s membrane in organ
culture.105 It is possible, however, that up-regulation of
integrins needed to bind to Bruch’s membrane may not
occur quickly enough to avoid the onset of cell death. For
example, freshly isolated adult RPE cells, despite low
levels or absent integrins, are still capable of attaching to
and surviving on BCE-ECM, yet they cannot seem to carry
out these functions on aged submacular human Bruch’s
membrane. Thus, as already noted, factors in addition to a
paucity of appropriate integrins on the cell surface may be
responsible for poor attachment of aged human RPE cells.
In contrast to aged submacular human Bruch’s membrane,
extracellular matrix molecules in BCE-ECM may be
arranged in a way that favors attachment.

In vivo and in vitro RPE transplantation models exist,
but they do not appear to be directly relevant to AMD
patients undergoing CNV excision. Previously reported
successful in vivo RPE transplants in laboratory animals
involve attachment to normal Bruch’s membrane or native
RPE. One can model the situation encountered in situ
after CNV excision by studying human RPE attachment
to submacular Bruch’s membrane in vitro.105,180 The system
uses aged human submacular Bruch’s membrane in organ
culture from which native RPE has been debrided surgi-
cally (ie, mechanically), exposing native RPE basement
membrane or the inner collagenous layer, depending on
the debridement depth. (Peripheral and submacular
Bruch’s membrane may differ in their ability to support
RPE attachment;193 RPE resurfacing in patients with
AMD must occur under the macula, the site of most CNV
ingrowth.) This in vitro system permits one to study alter-
ations in the cells (eg, treating the cells in situ; study
attachment of fetal versus adult versus transfected cells)
as well as alterations in the RPE-denuded surface (eg,
removal of native RPE basement membrane, addition of
extracellular matrix components to the surface, treatment
of the surface to expose relevant “masked” extracellular
matrix ligands). Limitations of this organ culture system
include (1) inability to study the effects the overlying
retina might have on RPE cell attachment and/or migra-
tion and proliferation;229-234 (2) inability to study the effects
of various substances added to stimulate RPE attachment
and/or migration and proliferation on the retina or chori-
ocapillaris; (3) inability to study the effect of the immune
system on retina-RPE-choriocapillaris cell survival; and
(4) inability to study the effect of the inflammatory

response on retina-RPE-choriocapillaris cell survival.
Despite its limitations, the paradigm appears to be relevant
to RPE replacement in humans with AMD. In vitro attach-
ment studies using this system predict poor uncultured
adult RPE survival in the CNV dissection bed,105,180 which is
what has been observed in immune suppressed patients
undergoing RPE transplantation after CNV excision.52

One way to transplant RPE cells in AMD patients and
avoid immune rejection is to use autologous grafts.53,103-105,235

RPE isolated from a biopsy could be transplanted under
the macula. On the basis of the results of this study, as well
as those of Tsukahara and coworkers,105 adult RPE enzy-
matically isolated from the biopsy for transplantation may
not lead to a successful graft. Culturing RPE cells may
improve the probability of attachment and survival in the
eye. Culturing also provides an opportunity to manipulate
the cells prior to transplantation and to establish cell lines
for transplantation.
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